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of the phase equilibrium,
In conclusion the author thanks L, A, Galin, S, 1, Anisimov and M, Ia, Azbel' for asses-
sment of this paper,
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We consider a non-self-similar problem of point explosion in a detonating gas,
in a medium of variable initjal density, Analytic expressions are obtained show-
ing the dependence of the pressure, density and gas velocity on the distance from
the origin of explosion and the radius of detonation wave, the latter obtained by
solving a differential equation, Computations are performed for the cases of
spherical and cylindrical symmetry for various values of the adiabatic exponent,
and the variation of initial density exponent,

Let us consider a perfect gas which is inviscid and non~heat~-conducting, Suppose that
an instantaneous explosion of finite energy £, occurs at the instafit ¢t = 0 in an unboun
ded medium atrest (»1 = 0) at a point, or along a plane, or along a staight line [1].
The explosion generates a smong shock wave which propagates through the gas and hearts
it up to the state at which rapid combustion becomes possible, Assumning that the energy
£, is large and much larger than the amount of energy ¢: released during the gas com-
bustion, we can infer that the gas burns in the direct vicinity of the shock-wave front,

In this case we can consider the shock wave and the chemical reaction zone together,
as a single surface of a swrong explosion with release of heat, i, e, treat it as a detonation-
wave front,
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Let us denote by pi1 the initial pressure and by o the initial density depending on the
initial coordinate ¢ of the particle in accordance with the law p1 = A§™, where A
is a positive dimensional constant and o is an abstract constant which may be positive
or negative, The case w = ( corresponds to the constant initial density.

Let Q be the heat generating capacity of a unit mass of the burning gas, Then the
energy Q, released during the combustion process by the time the radius of the wavefront
becomes equal to r,, is

Q=ovv—0)1pQr;,, o, =2F—1x+(v-2) (v—23)

where v = {, v =2 and v = 3 for the plane, cylindrical and spherical waves, respect~
ively,

From the physical considerations it follows that during the first instances following the
explosion the gas will move according to the laws governing a point explosion without
detonation, as the contribution of the energy of combustion to the total energy content
will be small, Assuming that the energy of explosion E, is much larger than the energy
of combustion Q,, we can find a region of flow r, < r*, r.* = (VE, / 6,40)'*** in
which the detonation exerts only a weak influence [2, 3].

On increasing the radius of the detonation wave the energy of combustion @, increases
as well, For this reason the influence of combustion must be taken into account in the
condition of conservation of energy, at the same time retraining unchanged the mechani-
cal conditions at the wave, ‘

Below we propose an approximate method of solution and consider 2 non=seif-similar
problem of expiosion in which the energy of combustion @, at the wavefront is taken
into account, The linearized formulation of this problem was considered in {4],

The solution of the problem under comsideration is reduced to integrating a system of
equations of gasdynamics for one-dimensional motions, with the initial conditions at the
center and the boundary conditions at the detonation-wave front both taken into account,
The system of equations of gasdynamics describing one-dimensional adiabatic motions
of the gas during explosion is taken in the following form:

ov v 1 9
T et o=
.?i_;_ (o)  (v—1or

T or T r =0 1)
de  p dp
T T

At the instant ¢ =0 a finite amount of energy E, is released at the center of symmetry
and the following initial conditions are specified:
v(r,0) =0, p(r,0) =p =.45" 2)
p (r, 0)= py = const, r,(0)=0
The following laws of conservation of mass, energy and the rate of change of mornentum
must hold at the detonation.wave front
P11 —c) = p, (vy — ¢}, p1 (1 — )+ p1 = Pg (v — € + ps @)
1 . np 1 I G
T O — R+ ot A= e — P T e

where ¢ is the shock wave velocity and 11 and 'y are specific heat capacities ahead and
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behind the wavefront.

Thus, in order to solve the problem of point explosion in a detonating gas, we must
find the solution of the system (1) satisfying the boundary conditions (2) and (3), The
systemn of defining parameters for the perturbed motion following an explosion, consists
of the following quantities
Ey G, A, P1y 0,9, 1 5D 4)

For simplicity we shall assume the detonation wave to be stong, in which case we can
ignore the {nitial pressure p; and then v, will vanish from the conditions (3) at the wave
front, In the case of a strong detonation wave the system (4) of defining parameters
implies that, when the dimensionless unknown functions and variables

f(;"i 4) = U/U,, g(x, 4) = p/plv h(;h Q) =P/P: (5)
A=rir,q=VO0k

are inroduced, then the dimensionless functions f(hg),g (A g and h (A, g) will also
depend on the constant parameters v and ®. The conditions at the strong detonation
wave (p; = () can be written for a gas atrest (v = 0) in the form

t,=c(l—2g), p=mme{1l—g), p,=pve

e=(r+ Dt r— VIi=20E—=1¢] (€)

Using the dimensionless variables (5) we can write the conditions at the detonation wave
in the form

i, d=1,¢g, =1 kK ¢= 1 Q)
When Q is arbitrary, the parameter ¢ becomes variable and the problem will consequen-
tly be noneselfesimilar, At small values of g the problem can be solved by linearizing
the initial equations (1) with respect to small parameter ¢ about the seif-similar solue
tion [5, §].

In the present paper the non-self-similar problem is solved by specifying one of the
functions characterizing the motions by means of an interpolation formula, The time-
dependent coefficients of this formula are obtained using the integral laws of conserva-
tion and the boundary conditions (6), The remaining functions characterizing the motions
are found from the exact equations of motion [9, 10].

The characteristics v, (£), ps (¢) and p, (2) at the detonation wave can be found from
the relation (6), provided that r; (¢) is known, To find r. (¢) we shall utilize the law of
conservation of energy connecting the energy of explosion E, and the energy of com-
bustion @, with the parameters of the detonation-wave front,

If 1 = 0, then the integral law of conservation of energy can be written in the dimen-
sionless variables (5) in the form

. , g il
. pO L@ h=5g + o h (®)
where . P _ (=8 e (—ep
nNE =G hne T—1 @ RE=735s 2e

1 1
L= Shl"ldi\., L= S gAY 1dh
0 [

Let us introduce the dimensionless quantities R and 7t

TEo >1 /v—o t To
s o =

t
R= =, = ro=(—-——QA —-Q-

To
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where r, denotes the dynamic length at ¢, the dynamic time,

The integral law can be used with advantage to determine the radius r, (¢) of the
shock wave, provided the solution of (1) has been found, If the dependence of the Euler-
ian coordinate r on ¢ and on the Lagrangian coordinate € is known, then the system
(1) yields analytic expressions for the velocity, density and pressure in terms of the radius
r and the radius of the detonation wave, We shall seek the function r in the following

form: r=c(t)E 4 b ©)

When ¢ (t), a: (¢) and b are chosen properly, the system (1) and the corresponding bound-
ary conditions (2) and (3) can be satisfled, We use the initial coordinates & of the par-
ticle as the Lagrangian coordinate, the latter assuming the value § = r, at the instant
at which the shock wave passes the particle, Then the coefficients appearing in (9) be-
come

oty = rid™e, b=0 (10)
The differential form of the law of conservation of mass together with (8) and (10) yield
r \e{
o= o) ‘“’
a(t)—v(-%j——i)——w-:—’ a;(t=%

In the following we shall assume, when solving the problem, that the density distribu-
tion within the shock wave is given by the formulas (11), Then the second equation of
(1) gives the velocity of the gas, and the first equation its pressure, The third equation
of (1), which is the energy equation, can be used to determine the radius r, (t) of the
shock wave, although the integral law of conservation of energy (8) is more convenijent
for this purpose, For this reason, from now on we shall use the latter in the region of per-
turbed motion contained within the shock wave,

Inserting the expression for o (r, #) from (11) into the second equation of (1) we obtain
an equation for the velocity, which, when solved with the boundary conditions (2) and (3)

taken into account, yields
4 d
v(r,t) = va (‘1 - :—:ln r’; ——In _:':_) r (12)

Inserting v (r, ¢) from (12) and p (r, ) from (11) into the first equation of (1) we obtain
an equation for the pressure, The latter, with the boundary condition (3) taken into ac-
count, can be solved to give the pressure,

After some simplification we obtain the formulas for the distribution of the dimension-
less characteristics of the motion in the perturbed region in the following form:

P Hjgors T ¢+2]_ pora I \at2 r r
h=Pz=1+(a+2)Pz [1—(ra> Pg(a+2)(r2> <H2+Haln72->ln7z-

3
LA — | L L G
k f= . [1_H¢ln Tz] rz * g = Pz (T‘;;>
where
Hg ZHS
H1=K1-——"a+2, Hq:Ku—a+z

d p r; d p2
Hgsrz[dt (lnp—:)] , Hy = Tz—-l_i?(ln?;)
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ve® dve d P2 V3 drs dry d P2
K== +—F _”2'&'{(1“})—1) @ T a@ ar\m o1

Ko 2Hs — 200 (ln 2 — B2 T (2)

The solution (13) satisfies all boundary conditions, The time ¢ enters this solution
through the characteristics of the motion at the detonation wave front and the front coor~
dinate r; (#). The conditions (6) at the detonation wave show clearly that all character-
istics v, (2), ps (t) and p. (#) of the motion in the perturbed region are expressed in terms
of the function r, (#) defining the law of propagation of the detonation wave, If the value
of ry (¢) is found, e, g. from an experiment, then the formulas (13) give a complete solu-
tion of the problem in question, i, e, that concerning an explosion in 2 medium of varia-
ble initial density with combustion taking place at the wavefront.

It must be noted that the formulas (13) are reduced to the same form as those obtained
in [7] while solving the problem of point explosion in a medium of variable initial den=
sity without combustion taking place at the front, but the dependence of the functions
Hi, Hy, Hy and He on R (9)is given by the formulas

_Q_ e—1 d(v—1)g 1 dq . e(e~—1) _ e,
H":ro{[ q [T(i-—e)-el:\ ¢ AR q“Hz} [v—o-r+ @—ve]

Q 20— AR d%q dg
Hy=—<r eq[‘r(i-—-e)—-e]{dlfa" +2d—e) Fp- +

[mi ey gy A ¢ gy pe :J(tvv:%q—'r el ‘:‘:‘] (_0_%_)3} (44)

Q 4(1—1)2R, dq _\2
H°=-r-o. €2 [T(1 —¢€) — a]z(dlfz>

2(v—1)qRs dq
e{t—e)[v(1—¢e)—e} dRs

Hy=

If the dimensionless radius R, (g) of the detonation-wave front is not known, then by
replacing in the equation of conservation of energy (8) the functions f (A, g), g (&, ¢) and
h (A, g} with the corresponding expressions from the solution (13) in which the functions
Hi, H,, Hy and H, are defined by (14), we obtain for R, (g) the following second order
ordinary differential equation:

a2 Rz(i-—-e
AIR2'WZ3'+{2"11(V+1+3-‘9)+ vq(“.’-—-i)(v—-c?)-}—Ze) -
' dg | 1 1
v =1 (=0 ) T+ et (e —
4(r—1)g 2vq (1 — 7)° }( dg )2 )
[Td—e)—ej(v—o+2e ~ [1(1—e)—e](v—u-+2e) di, | — >
4 —¢ vV—o—eg 1-—g] q° ' q* 0
(v-—m-g—Za){\v('r—i) T2 }' 75, 1% TV=e™
where
2Rsq

Ay = vt —¢€)—e] (v—a - 2&)?

Taking the parameter ¢ as the independent variable and R; (g) as well as 5 {g) =
dq / dR, as the functions to be determined, we obtain a system of two ordinary equations
which we integrated numerically for various values of ¥ , The values of R; (g) obtained
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were then used to determine the dimensionless characteristics, that is the pressure, velo-
city and density, from the formulas (13),
Figure 1 depicts, for several values of the dimensionless parameter ¢, the distributions
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